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Abstract. An algorithm is developed for the exact calculation of the many-spin correlation 
functions of Potts model clusters which is more efficient than the s tandard break-collapse 
method successfully used in real space renormalisation group calculations. The improved 
performance is based on a relationship which, at any stage of the calculation, allows the 
replacement of certain subgraphs by single effective edges, thereby decreasing the number 
of iterations needed. Our method avoids, as  in the standard one,  the t ime-consuming 
summation over spin states and  may be used to extend series expansion and  real space 
renormalisation g roup  calculations on  crystal lattices. Both methods are  based on a number 
of combinatorial  formulae,  the proofs of which are  given in this paper.  

1. Introduction 

In papers I and  I1 of this series (Essam and Tsallis 1986, de  Magalhiies and Essam 
1986, hereafter referred to as PFi  and PFZ respectively) the many-spin correlation 
functions of the A-state Potts model (Potts (1952); see Wu (1982) for a review) were 
expressed in terms of transmissivity functions. The latter were shown to have a simple 
combinatorial formulation in terms of flow polynomials (Tutte 1954). These relations 
are summarised in § 2 of this paper. 

In electrical network theory, multiport impedances may be obtained either by direct 
solution of Kirchoff’s equations or by progressive reduction of the network size using 
series and  parallel combination rules and  by replacing more complex subnetworks by 
effective impedances. The reduction method can have considerable computational 
advantage over the direct approach for large networks. Here we consider a Potts model 
on a network, or graph, in which the branches represent spin-spin interactions. An 
algorithm of the reduction type, which we shall call the subgraph break-collapse method 
( S B C M ) ,  will be developed for the flow polynomials and the transmissivity functions. 
The SBCM uses, in addition to the series, parallel and replacement rules, a relation 
called the break-collapse equation. 

The break-collapse equation reduces the calculation of the spin correlation functions 
for a Potts model cluster with graph G to that for two smaller graphs obtained from 
G by deleting and contracting a chosen edge?. An example of this is given in figure 
5 ( a )  where the central edge of the Wheatstone bridge L is deleted and  contracted to 

+ These graphs were called by Tsallis and  Le\) (1981) the ‘broken and  collapsed clusters’, but we prefer to 
follow the nomenclature of graph theory and  call them the deleted and  contracted graphs respectively. 
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give graphs G, and Gz respecticely. The open circles in figure 5 ( a )  (known as roots) 
are the locations of the spins between which the correlation function is to be calculated. 
The correlation functions for G,  and G2 can be easily computed using the series and  
parallel equations. Therefore one can calculate, by a simple procedure, the pair 
correlation function for this five-edge graph without examining the A‘ spin configur- 
ations or alternatively the 25 = 32 bond percolation configurations represented by the 
subgraphs of L. 

A convenient set of variables with which to describe the properties of a Potts model 
cluster is the ‘thermal transmissivities’ of the bonds (Tsallis and  Levy 1981) which will 
be denoted collectively by t.  For example, the transmissivity of the bond connecting 
spins 1 and 2 may be defined by considering the bond in isolation from the cluster, 
choosing a state for spin 1 and calculating the difference in probabilities of finding 
spin 2 in the same state and  in a particular different state. For ferromagnetic interactions 
this probability is equal to unity at zero temperature and decreases monotonically to 
zero as the temperature tends to infinity. The precise expression for the thermal 
transmissitivy, t , ,  of the bond corresponding to edge e of G, as a function of the 
temperature and its interaction parameter, is given in equation ( 2 . 2 ) .  In PFi the 
correlation function between spins 1 and 2 was proved to have the same probabilistic 
property as the thermal transmissivity provided that the probabilities are calculated 
taking into account all cluster interactions. This led to the identification of the pair 
correlation function with the equivalent transmissivity t;4( t ,  G) between spins 1 and 
2 of a cluster with graph G, introduced by Tsallis and Levy (1981). 

In an  earlier version of the SBCM, known as the break-collapse method or BCM 

(Tsallis and Levy 1981, Tsallis 1987), edges in series or parallel were replaced by 
‘effective edges’. In the SRCM replacement by effective edges is also made in graphs 
which are ‘non-reducible’ by series/parallel combination. In the BC‘M for t::( t ,  G) 
presented by Tsallis and  Levy (1981), it is implicitly assumed that, in any stage of 
calculation, each edge e has the thermal transmissivity t , .  This hypothesis restricts the 
application of the break-collapse equation to graphs which d o  not result from previous 
use of series and/or parallel equations. In order to remove this restriction, Tsallis 
(1987) conjectured a BCM which involves effectiue edges whose thermal transmissivities 
are ratios of multilinear functions of the t , ,  thus extending Tsallis and Levy’s conjecture 
(1981). It allowed the exact calculation of equivalent transmissivities for complex 
graphs such as, for example, the two-rooted graph shown in figure l ( h )  of da  Silva et 
a1 (1984) which has 35 edges and 20 independent cycles. The computing time of 
t t4 ( tx ,  t , ,  tZ ,  G) for this graph calculated by the BCM was, for example, 200 min for 
A = 3  (da  Silva, private communication) on the IBM-370 (model 158; 4Mb memory) 
computer. Notice that it would be practically impossible to calculate it from its 
definition as spin trace which would involve the examination of A l 6  configurations. 
This is just one example, among many others, of graphs with many independent cycles 
which appear frequently in real space renormalisation group calculations. In fact the 
BCM for a general graph has been successfully applied (Chaves et a1 1979, de  Oliveira 
et a1 1980, Tsallis and Levy 1981 and references therein, Chao 1981, de  Magalhies et 
a1 1982, de  Oliveira and  Tsallis 1982, Tsallis and dos Santos 1983, Lam and Zhang 
1983, da  Silva er a/ 1984, Costa and Tsallis 1984, Tsallis 1987) to the calculation of 
critical frontiers and critical exponents by the renormalisation group procedure. It 
has been applied to the pure as well as the randomly bond-diluted (isotropic or  
anisotropic) Potts model for arbitrary and specific values of A .  It is one of the main 
objectives of this paper to provide a proof of Tsallis’ conjecture (1987). 
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The calculation of the m-spin correlation function with m 2 3, described in PF2, 
requires the introduction of a generalisation of t;Y(t ,  G )  to m roots, namely the 
partitioned m-rooted equivalent transmissivity tbq( G ) ,  where P refers to any partition 
of the roots 1 , 2 , .  . . , m of G into blocks. It was shown that the m-spin correlation 
function is a linear combination of the tbq( G )  corresponding to all possible partitions 
of the m roots of G. Therefore, once one calculates the partitioned equivalent trans- 
missivities, then one can easily obtain all the correlation functions and the partition 
function through the use of expressions derived in w i  and PFZ (and  summarised in 
§ 2.2). 

The partitioned m-rooted equivalent transmissivities were shown ( PFI ,  PFZ) to have 
a simple combinatorial formulation in terms of the flow polynomials of graph theory 
(Tutte 1954, 1984) and of their corresponding extensions for m-rooted graphs, namely, 
the partitioned m-rooted flow polynomials (PFZ). In  this paper we extend the deletion- 
contraction technique for flow polynomials described by Tutte (1954) from edges to 
subgraphs. This forms the basis of the SBCM for the above polynomials and is the 
starting point for our derivation of the SBCM for tbq(G). 

This paper is divided into seven sections and  one appendix. In § 2 we summarise 
results from PFZ concerning the partition function and the multispin correlation func- 
tion. I n  9 3, we derive properties of the flow polynomials and partitioned flow poly- 
nomials and  in § 4 they are used to derive the corresponding results for the partitioned 
equivalent transmissivity. In Q 5 we describe the computer algorithms (SBCM and the 
B C M )  which may be applied to both flow polynomials and transmissivities; explicit 
illustrations of both algorithms are given. In 9 6 ,  we study the A + 1 limit of our results. 
Consideration of this limit enables the SBCM to be extended to the partitioned m-rooted 
connectedness function (this function contains as a particular case the usual pair 
connectedness of percolation theory). In § 7 we summarise our results. Finally, in the 
appendix, we quote the SBCM formulae in terms of the p variable of Kasteleyn and 
Fortuin (1969) and also give its extension to the Whitney rank function and to its 
generalisation, the partitioned m-rooted rank function. 

2. Main results of papers I and I1 

In this section we summarise the formulae for the equivalent transmissivities and flow 
polynomials derived in PFI  and PFZ and  also give expressions for the multispin 
correlation functions in terms of the transmissivity functions. Since the t variable has 
been shown to be more convenient than the p variable (see PFZ), we shall restrict 
ourselves, throughout the main body of this paper, to the t variable. The corresponding 
results in the p variable will be quoted in the appendix. 

2.1. Dejnitions and summary of previous results 

We consider the Potts model for a graph G with vertex set V and edge set E. With 
each vertex i of V we associate a spin vector s, of length s which can take on one of 
A values e , ,  . . . , e,, which are the position vectors of the  corners of a ( A  - 1)-dimensional 
hypertetrahedron relative to its centre. The Hamiltonian of the model is 
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where J ,  is a given interaction parameter for the edge e. The 'thermal transmissivity' 
of the edge e, as defined in the introduction, is 

1 -exp(-AJ,/k,T) 
l+ (A- l ) exp i -AJ , /k ,T) '  

t, = 

The corresponding bond percolation model on the graph G is one in which the edge 
e has probability t ,  of being present. Let G' be a partial graph of G, i.e. a subgraph 
of G having the same vertex set and the subset E' of edges. If Q(G')  is a function 
defined for each G' its expected value is given by: 

(2 .3)  

and will be known as the 'percolation average' of Q. 
Now suppose that m of the vertices of G are designated as roots and labelled 

1 , 2 , .  . . , m and let P be a given partition of these roots into blocks. The partitioned 
equivalent transmissivity is defined by: 

fbq(f ,  G)=Np(t ,  G ) / D ( t ,  G)  (2 .4)  

with 

m t ,  G) = (h'?G,, ( 2 . 5 )  

and 

N d t ,  G )  = ( A L Y P ? C i . ,  (2 .6a)  

where 

1 if roots in the same block of 
the partition P are connected among 
themselves in G' and if roots of different 
blocks are not connected 

(2 .6b)  I 0 otnerwise 

Y d G ' )  = 

and c(  G') is the number of independent cycles in the subgraph G'. When yp( G ' )  = 1 
the roots are said to be $-partitioned by G'. We write P = { E , ,  El2 , .  . . , E h }  and the 
block E, will be said to have I ,  roots of type i. For example in figure 4(c)  where 
P = {{l, 2 ) ;  { 3 , 4 } ;  { 5 , 6 , 7 , 8 , 9 } } ,  the roots of type 1, 2 and  3 are represented by squares, 
triangles and  circles respectively. In the case m = 2 and P has a single block {1,2} it 
was shown ( P F i )  that this definition of rbq( t ,  G) agrees with that of Tsallis and Levy 
(1981) discussed in the introduction. 

It was shown in PF1 that D(t ,  G )  is a multilinear form in the t ,  variables: 

D(r, G ) =  1 F ( A ,  G') n f, 
G G G  e s E  

where F(A ,  G) is the flow polynomial of G given by 

F ( A , G ) =  ( - 1 ) I E  A " " ' .  
G C G  

(2 .7)  

Notice that if t ,  = t for all edges e of E then D( t ,  G )  becomes a polynomial in t .  
F(A ,  G) has the physical interpretation of being the number of proper integer 

mod-A flows on G. In PFI the definition of such flows was given and illustrated. 
Briefly, G is given an  arbitrary directing and a flow with integer value in the range 1 



The Potts model and f lows:  111 477 

to A - 1 is assigned to each edge subject t o  the condition that the signed sum of the 
flows at any vertex must be zero mod A. This immediately implies that F is zero if G 
has any vertex of degree one. In  the simplest non-trivial case of a polygonal graph 
F ( A ,  G)  = A - 1 and in general F is a topological invariant. In the case of the Ising 
model ( A  = 2)  the flow in any edge must be unity and the vertex condition can only 
be satisfied if the vertex has even degree. Thus F ( 2 ,  G) = 1 if G has all even vertices 
but is otherwise zero. In this case (2.7) is the usual hyperbolic tangent expansion. 

The corresponding multilinear form of Np( 1, G )  is (PFZ): 

where the partitioned m-rooted flow polynomial is 

(2.10) 
G T G  

In  general we have been unable to interpret the rooted flow polynomial in terms of 
mod-A flows, although in PFZ it was shown to have most of the properties of F ( A ,  G). 
However in the case when there are only two roots of the same type ( i  and j ,  say) it 
is related to F(A, G) by 

F;,(A, G)=F(A,GUe) / (A-1 )  (2.11) 

where e is an  additional edge connecting i and j .  In  this case it can be interpreted as 
the number of proper integer mod-A flows when a fixed non-zero external flow is 
introduced at i and removed atj .  The simplest example of a partitioned flow polynomial 
with P having more than one block is F,,,(A, G). It follows immediately from the 
definitions (2 .8)  and (2.101, using y,,,(G’)+ y,, (G’)  = 1 ,  that 

(2.12) F,,,(A, G) = F ( A ,  G) - F,,(A, GI. 

2.2. The partition function and correlation functions 

The formulae in this section summarise the expressions developed in P F i  and PFZ 
relating the partition function and correlation functions to the transmissivity functions 
defined above. They are included for easy reference and may be skipped without loss 
of continuity. 

In PFi  the partition function Z( t, G )  of a Potts cluster was related to the denominator 
of the transmissivity functions by: 

II {exp[(h -1)K,I+(A -1)  e x p ( - ~ ) )  D(t, G )  

(2.13) 
LEE 1 Z ( t ,  G)  = A ’ ” ” ‘  

where the spin vectors have length s such that s’ = A - 1. 
In PFZ the correlation function rI2  ,,,(r, G) among the components s I I ,  s?,, . . . , s,, 

of the m spins s, , s2,  . . . , s, along one of the A special directions, say e , ,  was related 
to the partitioned equivalent transmissivities tiq( t ,  G) through 

l-12 , ( f ,  G )  (SIISZI . . . s,i)g 

1 Gq(t,  G)F(A, G) (2.14) = ( A  - 
P E  PIMI 
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(2.15) 

and (. . . )z  means a thermal average. In (2.14) the sum is over the set @ ( M )  of all 
partitions P of the set M = {1 ,2 , .  . . , m }  of roots of G into blocks which contain at 
least two roots. F (  A, Z,) is the flow polynomial of the 'interface graph' I, constructed 
from the partition P as follows: for i = 1 , .  . . , b associate with the block B, a vertex v, 
and connect it to an  'external' vertex U by an  edge of multiplicity I ,  (hence Z, has b + 1 
vertices and m edges). F(A,  Z,) is given by 

[ ( A  - l ) " - ' + ( - l ) ' ~ ] .  (2.16) ( A  - 1 )  
F ( A ,  IP)= II ___ 

We shall develop in the subsequent sections, SBCM for D(t ,  G), N,(t, G )  and 
tbq( t, G) which provide a powerful technique for evaluating the above expressions for 
Z ( t ,  G) and r12 ,,,(r, G). We shall also discuss the BCM for t:q(t, G). 

B , S P  A 

3. Properties of F ( A ,  C )  and Fp(A, C )  

We now extend the deletion-contraction rules for & ( A ,  G) (see equation (4.14) of 
P F ~ )  and F ( h ,  G) (see equation (4.8) of w i )  to the cases where, instead of a single 
edge e, we consider a subgraph L of G which has only two vertices in common with 
the remainder of G. As we will see in the next section, these extensions form the heart 
of the proof of the SBCM for PIp( t ,  G) and D( t ,  G). We also consider the combination 
of graphs in parallel and in series and the factorisation of partitioned flow polynomials 
for articulated graphs. The formulae obtained will be used in the next section to obtain 
the corresponding results for equivalent transmissivities and, in § 5 ,  as the basis of an  
algorithm for flow polynomials. In addition to the graph theoretic interest in flow 
polynomials, they are also used in deriving the coefficients in series expansions for 
lattice problems. 

In this section we shall assume, unless otherwise stated to the contrary, that G is 
a two-reducible m-rooted graph (Essam 1970) which is the union of two subgraphs L 
and H subject to the following conditions: (i) they intersect only at the vertices i and 
j (there are no  edges in common); (ii) one of them, say H, contains all of the m roots 
of G. The vertices i a n d / o r j  may be rooted or  not (see figure 1 ) .  

3.1. The subgraph break-collapse equation for F(A, G) 

Before embarking on the general analysis of the partitioned flow polynomials we 
present a simple intuitive derivation of the subgraph break-collapse equation (SBCE) 

in the unrooted case which is illustrated schematically in figure 2. Let Qnet be the 
value of the net flow from L to H at the intersection vertex i (which, by conservation 
of 'fluid' mod-A, must be equal t o  the value of the net flow mod-A from H to L at j ) .  
The proper mod-A flows in G = H U L may be partitioned into two sets: (a )  proper 
mod-A flows in which Qnet=0 and (b)  proper mod-A flows in which Q n e r f O .  The 
proper flows on G which satisfy condition (a )  may be counted by combining any 
proper flow in H with any proper flow in L and hence the total number of such flows 
will simply be F(A ,  H ) F ( A ,  L )  (this is illustrated by the pair of graphs just after the 
equality sign in figure 2 ) .  The proper flows in G subject to condition (b) may be 
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J E m  

I C  I 

i :  1 

j r m  

id1 

Figure 1.  Pictorial representations of two-reducible m-rooted graphs G = L U H ,  where the 
intersection vertices i and j can be rooted or not.  The roots I , ? , .  , . , m are represented 
by small circles and  unrooted vertices by full dots;  each subgraph is represented by a 
half-moon shape.  

f i h , H u  L i  

a,,, = 0 or Qne.t o 

t F  

f:; ( X , L )  f : A , H u e )  

@,e+$ 0 

Figure2. Pictorial representation of equation (3.1 1. @,,et is the value of the net mod-A flow 
from L to H at i which is equal to the net mod-A flow from H to L at j .  
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counted by considering the proper flows on the graph G obtained from G by replacing 
L by a single edge e. Any proper mod-A flow on G can be combined with any proper 
mod-A flow on L, which is subject to a non-zero external flow in at j and out at i ,  
thereby giving a proper mod-A Aow on G. In 5 2.1 it was mentioned that F,,(A, L )  
could be interpreted as the number of proper mod-A flows on L with a fixed external 
flow. Consequently the total number of proper mod-A .flows on G with Q n e t # O  is 
given by F ( A ,  G)F,,(A, L )  (see the last pair of graphs of figure 2). The total number 
of flows is obtained by summing the contributions from flows of type (a )  and (b) and 
hence, writing G = H U e :  

A C N d e  Maga lh ie s  and J W Essam 

F ( A ,  G )  = F ( A ,  L ) F ( A ,  H)+F,,(A, L ) F ( A ,  H U e ) .  (3.1) 

From the deletion-contraction rule for a single edge (see equation (4.8) of wi with 
G = H U e ) :  

F ( A ,  H U e )  = F ( A ,  H,=,) - F(A ,  H) 

F ( A ,  G )  = [ F ( A ,  L )  - F;,(A, L ) ] F ( A ,  H )  + Fv(A, L ) F ( A ,  H,=,) 

(3.2) 

and therefore 

(3.3) 

where H,=, is the bicollapsed graph obtained from H by identifying vertices i and j .  
This is the ‘subgraph break-collapse equation’ (SBCE) for F ( A ,  G ) .  

3.2. The subgraph break-collapse equation f o r  rooted f low  polynomials 

Since we have no interpretation for Fp( A, G )  in terms of counting flows, the argument 
of the previous section cannot be extended to the general partitioned flow polynomial. 
Instead we work directly from the definition (2.10). We shall examine how the quantities 
y p ( G ’ ) ,  c(G’) and IE’l relate to the corresponding ones in the partial graphs L’ of L 
and H’  of H. We shall suppose for the moment that i and j are not rooted, as shown 
in figure l ( a ) .  

First let us see what is the relationship between yp(  G’) and  yp(  H’ ) .  If there is no 
path f rom i to j on L’ (i.e. y,,,(L’) = 1)  then in order that the m roots are P partitioned 
by G’ (i.e. y p ( G ‘ )  = 1)  they must also be P partitioned by H’ (i.e. y,(H‘) = 1) since 
no root of H ’  can be connected to another root of H‘ via a path on L’ (see the first 
parenthesis on the right-hand side of the equality sign of figure 3). If there is a path 
between i and j on L‘ (i.e. y , ] (L ’ )  = 1; see the last parenthesis in figure 3) then the 
condition yp(  G’ )  = 1 can be satisfied in the following cases: ( i )  y,(H’) = 0 or  (ii) 
y p ( H ’ )  = 1. In case (i)  some roots of H’ must be connected to other roots of H’ via 
paths on L’ (see the penultimate graph of figure 3). In both cases (i) and (ii) the m 
roots are P partitioned by the bicollapsed graph H:=,. Hence, for every partial graph 
G’ of G the following identity holds: 

yp( G’) = Y,,,( L’)yp( H ’ )  + Y,,( L‘)YF( H : = , )  (VG‘= H ‘ U  L‘c G). (3.4) 
Now let us examine how c ( G ’ )  relates to c ( H ’ )  and c ( L ’ ) .  If y,,,(L’) = 1 then no new 
cycle can be formed when we consider the union of L’ with H’,  i.e. c(G’) is just the 
sum of c (L’ )  and c( H ’ )  (see the first parenthesis on the right-hand side of the equality 
sign of figure 3) .  I f  y, ,(L’) = 1 then we have to consider two cases, namely ( a )  y),,( H’) = 1 
and (b)  y,,( H’) = 1. In  case (b) ,  the union of paths on L’ and H’ between i and j gives 
rise to a n  extra cycle in G’ = L ’ U  H’, i.e. c( G’) = c (L’ )  + c ( H ’ )  + 1 (see the last graph 
of figure 3). In case ( a )  no new cycles appear and c( G’) is just the sum of c( L’) and 
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Figure3. Illustration of equation (3.4) in the case where 1 must be connected to 2 ,  and 3 
must be connected to 4 on G‘, i.e. P={{l, 2); {3,4}}. The roots of type 1 and 2 are 
respectively represented by small squares and circles. A broken line between any pair of 
vertices indicates that there is a path between these tertices. 

c ( H ’ )  (see the penultimate graph of figure 3 ) .  It is easy to verify that in both cases 
(a)  and (b), c(G’) is equal to the sum of c(L’) and c ( H ; = / ) .  It follows therefore that 

4 G ’ )  = y , , , ( L ’ ) ( c ( H ‘ ) +  c ( L ’ ) ) +  Y , / ( L ’ ) ( ~ ( H ; = , ) + ~ ( L ’ ) )  
(3.5) 

Concerning the number of edges IE’I, since H’ and L’ have no edges in common and 
since by definition IE(H:=,)I = IE(H’)I  it follows trivially that 

IE’I = / E ( H ’ ) I + I E ( L ’ ) /  = lE(H;=,)l+lE(L’)l (VG’= H ’ U  L’G G).  (3 .6)  
Combining (3 .4)-(3.6)  we get that 

(VG‘= H’U L’c G).  

Y ~ ( G ’ ) A = ‘ ~  l ( - i ) l E ‘ E  
- - y , , ( ~ t ) ~ ‘ ( L  ) ( - 1 ) l E ( L ) \ E ( L  11 rp( H t )  A L ( H 1 ( - 1 ) I  E (  H I\ E (  H 1 

(3.7) + Y o ( ~ ’ ) ~ ‘ ( L  1 ( - 1 ) l E ( L )  E ( L )  yp ( H ;  = , ) A  ‘ 1 H = ) ( - 1) l E (  

(VG’=  H ‘ U  L‘c G).  

, )\E( ! ’ 

Summing over all partial graphs G‘ of G and using (2.10) and (2.12) we obtain 

FP(A ,  G )  = F,,,(A, L)Fp(A ,  HI+ Ft,(A, L)FP(A, H,=,) (3.8) 

(3 .9)  
which is the required SBCE for FP(A, G).  

Notice that the arguments used to derive the above SBCE apply also to the cases 
where i and/or J are roots except if and J are roots of different types. In this latter 

= [ F ( A ,  L )  - F,/(A, L)IFP(A, HI+ Fo(4 L)FP(A,  M=,) 
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situation, if y,,(L') = 1 the condition yp( G') = 1 cannot be satisfied. Nevertheless (3.4) 
continues to be valid since 

? P ( H : = J )  = O  if i and j are roots of different types (3.10) 

and the right-hand side of (3.4) correctly reduces to the first product. Furthermore, 
from (3.10) and (2.10) it follows that 

Fp(A, H,=,)=O if i and j are roots of different types ( 3 . 1 1 )  

and the right-hand side of (3.8) correctly reduces to the first product. Consequently 
the SBCE (3.9) applies to all the four situations in figure 1 .  

The SBCE for F ( A ,  G),  which we obtained heuristically in 5 3.1, can be deduced 
from (3.7) by imposing that y,(G') = 1 (and consequently y p ( H ' )  = yP(H:=, )  = 1 )  for 
every graph G'E G and using (2.8). 

In the construction of H,=,, the collapse of i and j leads to: (i)  a root if at least 
one of them is a root, ( i i )  an unrooted vertex if both i and j are unrooted. Observe 
that when i and j are the only roots of G, and P contains a single block, then 

F;,(A, H I = , )  = F ( A ,  H,=J) '  (3.12) 

When L is a single edge e between i and j (3.9) becomes: 

Fp(A, H U e)  = F d A ,  HI=,) - FAA,  H )  (3.13) 

which can be written equivalently in terms of G = H U e as 

Fp(A, G) = FP(A, G:) - & ( A ,  Gt) (3.14) 

where G,Y and G: are the respective graphs obtained from G by contracting and 
deleting the edge e of G. Equation (3.14) is the deletion-contraction rule obtained 
previously (see equation (4.14) of PFZ).  

Using (3.13), we can write (3.9) in the form 

FP(A ,  G) = F(A ,  L)FP(A, H )  + F;,(A, L)FP(A, H U e)  (3.15) 

which is the extension of (3 .1)  to partitioned flow polynomials. 

3.3. Parallel combination of graphs 

In the particular case when P = { { i , j } }  (i.e. the only roots are the intersection vertices, 
see figure 4(e ) )  we say that H and L are in parallel. From SBCE (3.9) applied to 
F;,(A, H U L )  we obtain the parallel equation 

FI~(A, H U  L ) = F ( A ,  L ) F ~ J ( A ,  H)+FI,(A, L ) F ( A ,  H ) + ( A  -2)F;,(A, L)F;,(A, H )  
(3.16) 

where we have used (3.121, (3.2) and (2.11). This equation may be obtained intuitively 
by an argument similar to that leading to (3.1). The first two terms correspond to the 
case when there is no flow between L and H (case(a)). In the first term the external 
flow passes through H, and in the second term it passes through L. In the third term 
there is a non-zero flow between H and L. This flow can take on only A - 2  values 
since if it were equal to the external flow the resulting flow pattern would correspond 
to case (a).  
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The corresponding equation for unrooted graphs may be obtained from (3.1), (3.2) 

(3.17) 

which will be required in calculating the denominator of the transmissivity for parallel 
combinations. Again a simple interpretation is possible. The first and second terms 
correspond to no flow and positive flow between H and L respectively but this time 
there are A - 1 values for the internal circulation. 

and (2.11) 

F ( A ,  G)=F(A,  L ) F ( A ,  H ) + ( A  -1)F[,(A, L)F,,(A, HI 

3.4. Factorisation rules for articulated graphs 

When two graphs GI and G, intersect at only one vertex i ,  then (property (i i)  of 
F(A,  G )  in PFI) :  

(3.18) 

The factorisation rule for Fp(A, GI U G,) depends on the distribution of the roots of 
GI U G,. There are four cases to consider which are pictorially illustrated in figure 4. 

F ( A ,  GI U G2) = F ( A ,  Gi)F(A, G2). 

l e )  

J 

Figure 4. Pictorial representations of two graphs G, and Gz which share an articulation 
vertex ( ( a ) ,  ( b ) ,  ( c )  and ( d ) )  and which are in parallel ( e ) .  Roots of the same type are 
represented by the same symbol (0 or A or 0 or 0) .  In  case ( e ) ,  the only roots of G, 
and G, are i and j .  Roots of the same type are connected by a broken line. 
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Figure 4 ( a ) .  There are no roots in G2 except possibly i. This case is covered by 

(3 .18a)  

Figure 4( b ) .  There are roots in both G I  and G2 but each block of P is contained 

&(A, Gi U G2) = F d A ,  GI)FP,~(A, G2) (3.18 b )  

where P‘ and P” are the restrictions of P to GI  and G2 respectively. If i is not a root 
the combination rule is not a simple factorisation. 

Figure 4( c). Exactly one block of P contains roots in both GI  and G,. The equation 
is the same as (3 .18b)  except that if i is not a root then it must be converted into a 
root of the same type as the common block before calculating P’ and P”. 

Figure 4 ( d ) .  If more than one block c;f P contains roots in both GI  and G2 then 
yp( G’) is zero for all partial graphs of GI  U G2 and so &(A, GI  U G,) = 0. 

property (v) of P F ~  and 

&(A,  Gi U G2) = FP(A, GI)F(A, G,). 

within either G I  or G?.  If i is a root it is again possible to factorise Fp and 

3.5. Series combination of graphs 

A two-rooted graph with roots 1 and 2 is said to be a series combination if it is the 
union of two graphs G,  and G2 which have only one non-rooted vertex i in common 
and roots 1 and 2 belong to GI  and G2 respectively. Since this is a special case of 
figure 4 ( c )  above we have 

(3.19) 

In terms of counting flows the result follows since the same external flow passes through 
G,  and G, and the two factors count the number of internal flows for each graph 
consistent with the given external flow. 

Fl,(A, Gi U G2) = F l i ( A ,  GI)Fi2(A, (32).  

4. Properties of Np(t ,  G), D(t ,  G )  and tbq(t, G )  

The equations derived in § 3 for F ( A ,  G’) and F p ( A ,  G‘) will now be used to deduce 
the corresponding equations for their respective generating functions, i.e. the 
denominator D( t ,  G )  and the numerator Np( t, G )  of tbq( t, G). The general strategy 
is to apply the results of § 3 to the subgraphs in (2 .7)  and (2 .9) .  The validity of applying 
the formulae derived for G to its subgraphs G’ will only be discussed at its first 
occurrence. The subgraph break-collapse equation for tbq( t ,  G )  is used to introduce 
the concept of an effective edge. Series/parallel equations are formulated for effective 
edges as well as an ‘effective break-collapse equation’. These will be used in the 
algorithms of the following section. 

4.1.  The subgraph break-collapse equation 

We begin by deducing the SBCE for Np( t ,  G )  from the result (3.9) for &(A, G ) .  Since 
a subgraph G”  = L”U H ”  of G ‘ =  H‘U L’ is also a subgraph of G = H U L, it follows 
that (3 .7)  holds also for all GI‘s G’. Consequently (3 .9)  remains true for any subgraph 
G’ of G, namely 

Fp(A, G’)=[F(A, L’)-Fu(A,  L’)]Fp(A, H’)+F,,(A, L’)Fp(A, H : = j ) .  

(4 .1)  



The Ports model andj lows:  I I I  485 

Combining (2.9) and (4.1) we get the following SBCE for Np( t, G): 

N d t ,  G ) = [ D ( t , L ) - N , , ( t ,  L)IN,(t, H ) + N , ( t ,  L ) N d t ,  H,=,). 

D(t ,  G ) = [ D ( t ,  L ) - N , , ( f ,  L)ID(t,  H ) + N , , ( t ,  L )D( t ,  H,=,). 

(4.2) 

Similarly (2.7) combined with (3.3) applied to G'  gives 

(4.3) 

Notice that when i a n d j  are roots ofdifferent types then ( 3 . 1 1 )  holds for all H:=, c H,=,. 
Therefore using (2.9) 

N p ( t ,  H,=,)=O if i and j are roots of different types. (4.4) 

If i a n d j  are roots of the same type and G has no other roots, then (3.12) applies for 
all H : = , c  HI,, and so 

(4.5) 

From (4.2), (4.3) and the definition (2.4) of tgq( t ,  G)  we obtain the following 'subgraph 
break-collapse equation' for rbq( t ,  G) 

t;q( t ,  G )  = 

N,,(t, H,=,) = D(t ,  H,=,). 

(4.6) [D(r ,  L ) -  N,,(t, L)1&(4 H)+ N,,(t, L)NP(t ,  H,=,) 
[ m t ,  L )  - NI,(?, L)ID(4 HI+ N,,(t, L )D( t ,  H=,) 

or  equivalently 

When L is a single edge e, (4.6') reduces to 

or, in terms of G = H U e, 

(4.6') 

(4.7) 

(4.7') 

which recovers our previous result (equation (5.2) of PFZ) and extends the BCE of 
Tsallis and  Levy (1981) from ri:,,,,(r, G)  to tbq(t, G). 

4.2. Efective edges: series and parallel equations and the efective break-collapse equation 

We may think of equation (4.7) as making the dependence of tbq(t, G )  on the trans- 
missivity t,, of edge e, explicit since the other factors on the right are independent of 
re.  li comparison of (4.6') and (4.7) shows that if G has a subgraph L which is attached 
at only two vertices, say i and j ,  and which has no internal roots, then the partitioned 
equivalent transmissivity of G is the same as that of the graph H U e,, obtained by 
replacing L by a single effective edge e,, with transmissivity re,= ty(r, L ) .  The edge 
e,, will be said to represent the two-rooted graph L. It may be that H U e,, has a 
further subgraph of the same type as L in which case the replacement process may be 
repeated. In fact more and  more effective edges may be created until one arrives at a 
two-irreducible graph. The actual substitution r e ,  = r:;(t, L )  may only be carried out 
when tbq( t, H U e e H )  is known. If this is not the case, the current graph is discarded 
by the computer and replaced by H U e,,,, and the numerator Ne,  and denominator 
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Deff  are stored along with each effective edge as part of the graph description. Usually 
tP( t, L )  will not be known and attention is transferred to the calculation of this quantity 
before H U e,, is created. This latter calculation may itself be carried out by a reduction 
process. 

In the case that L is the series or parallel combination of a pair of edges, teff may 
be obtained by a direct calculation for the pair of edges in isolation using (2.7) and 
(2.9) which yields (see also Domb (1974)) for series combination 

1;; = t ,  t z  (4.8) 

t:;’ = [ t l  + t 2 +  ( A  - 2)tl t 2 ] / [  1 + ( A  - 1 ) t l  t J .  (4.9) 

The replacement of a pair of edges in series or parallel by a single edge is not restricted 
to the original edges of G. Suppose that e:;’ and e:’ are effective edges with thermal 
transmissivities t:;’ = N , /  D ,  and r!&) = N2/ D 2 ,  then another consequence of the 
effective edge rule is that we may make the substitutions t ,  = N I /  D ,  and t2 = N2/ D2 
in (4.8) and (4.9), and thereby obtain the equations for combining effective edges in 
series or parallel. With the definitions 

t:; = NF;/ 0:; and t e f f  (P) = N $ ) / D $ )  (4.10) 

and for parallel combination 

the series combination rule is 

NFA = N I  N2 ( 4 . 1 1 ~ )  

0:“; = D ,  Dz (4.1 1 b)  

and the parallel combination rule is 

N S ’  = NI 0 2  + D1 Nz + ( A  - 2 )  NI Nz ( 4 . 1 2 ~ )  

DL$’= D , D , + ( A  - l ) N , N 2 .  (4.12 b )  

This result is at the heart of both the BCM and SBCM for tbq( t, G), since it allows one 
to replace all the edges in series and/or parallel of a graph G by efectiue edges, thereby 
generating a graph e which contains edges whose thermal transmissivities are the 
ratios of multilinear functions in 1,. When all such replacements have been made, 
there may still be a subgraph L of 6 which is attached at only two vertices and has 
no internal roots. We shall call the operation of replacing such a subgraph L, which 
has no edges in series and J or parallel, by an effective edge e,, , the non-reducible subgraph 
replacement. In the SBCM, the above replacements are carried out repeatedly. When 
6 is no longer two-reducible, one chooses an edge eeR with thermal transmissivity 
teff = N e d  DeR,  to be deleted and contracted, and applies the following efectiue break- 
collapse equations: 

( 4 . 1 3 ~ )  

(4.13b) 

Equations (4.13) result from (4.7’) by replacing t ,  by N,, /D, ,  and multiplying the 
numerator and the denominator by De*. When P has just one block, equations (4.13) 
reduce to the BCE conjectured by Tsallis (1987). Notice that the SBCE (4.6) is equivalent 
to a non-reducible subgraph replacement followed immediately by applying equations 
(4.13) to the effective edge created. 

NP(~, G) =(De t f -Nef i )N~( t ,  G2eK)+ NefiNp(t, GZeK) 

D(t ,  G) = (Defi- Ne,)D(f,  G,6J+ N,,D(t,  G2’<J. 
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4.3. Combination of graphs in parallel 

The graph we shall consider is shown in figure 4(e) and is the parallel combination 
of graphs G, and G2. The common root points are labelled i and j .  Using equations 
(3.16) and (3.17) applied to G’ together with the relations (2.9) and (2.7) we deduce 
the ‘parallel rule for graphs’: 

N,(t ,  GiU G2)=NV(t, Gi)D(t, Gz)+N,(t, G?)D(f ,  G,)+(A-2)N, , ( t ,  G,)Nty(f, G,) 
( 4 . 1 4 ~ )  

D(t ,  GiUG, )=D( t ,  G,)D(t ,  G,)+(A-l)N, , ( t ,  Gi)N,,(r, G?). (4.14b) 

This provides an alternative derivation of equations (4.12). 
From equations (4.14) it may be seen that the variables X = D + ( A  -1 )N  and 

Y = D - N satisfy a product rule. In the general case of n graphs G, ( a  = 1,2, . . , , n )  
in parallel with equivalent transmissivities Net/ D,, between i and j ,  repetition of this 
rule leads to 

( 4 . 1 5 ~ )  

where 
n 

X ( t ) =  [D,+(A-l)N,]  
n = l  

and 

(4 .15~)  

(4.15d) 

These equations are used for combining more than two effective edges in parallel. 

4.4.  Factorisation rules for articulated graphs 

Here we suppose, as in § 3.4, that GI  and G2 have just one vertex in common. The 
equations of § 3.4 together with (2.7) and (2.9) give the following factorisation rules: 

(4.16) D( t, GI U G,) = D( t, Gl)D( t, G,) 

(cf property (ii) of D(t ,  G)  in PFi) .  

numerator is 
When all roots belong to G, , as in figure 4( a ) ,  the formula for factorisation of the 

(4 .17~)  
(cf property (v )  of Np( t, G )  in PFZ). The equations for the cases represented by figures 
4(b) and 4(c) are: 

(4.176) 

with the condition that in figure 4(b) the articulation point must be rooted. In the 
case represented by figure 4( d )  

(4 .17~)  

Np( t ,  Gi U G2)= Np(t, Gi)D(t, G2) 

Np(t, G, U G2) = Np,( t ,  GI)&( t, G,) 

N p (  t, GI U G2) = 0. 
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The corresponding relations for t ,  G, U GI) are given by the ratios of (4.17) and 
(4.16). 

The series combination rule for graphs is an example of the case represented by 
figure 4(c) and rederives (4.11) for effective edges in series. It is easily shown that 
these factorisation rules apply also to graphs having effective edges. 

5. Computer algorithms for equivalent transmissivities and flow polynomials 

The results derived in 9 9  3 and 4 lead to two methods, the SBCM and the BCM, for 
computing partitioned flow polynomials and equivalent transmissivities. Both methods 
allow the calculation of multispin correlation functions (2.14) and of the partition 
function (2.13) without having to examine all the subgraphs G' of G which contribute 
to D(r, G) (see (2.7)) or to N,(t, G )  (see (2.9)). Similarly these methods provide a 
way of calculating F ( A ,  G)  and Fp(A, G )  without the examination of the subgraphs 
G' appearing in (2.8) and (2.10) respectively. The algorithms will be presented with 
reference to the transmissivities, but the extension to flow polynomials is immediate 
by replacing D(t ,  G) and N,(r, G )  by F ( A ,  G) and & ( A ,  G )  respectively. 

5.1. The SBCM for t&q((t, G) 

The SBCM for tbq( r ,  G) consists essentially in applying successively a combination of: 
(i) the factorisation rules for articulated graphs ((4.16) and (4.17)), (ii) the relations 
for effective edges in series (4.1 1) and in parallel (4.12), (iii) the non-reducible subgraph 
replacement, and (iv) the effective BCE (4.13). We can compute tbq( t ,  G) for a given 
m-rooted graph G and a given partition P = { B , ,  B 2 , .  . . , B b }  of the roots using a 
recursive language (e.g. P L i  or PASCAL) and a recursive procedure T (  G, P, N,  D ) .  In 
this procedure we assume that all the graphs are decorated, i.e. to each edge e = [ i , j ]  
we associate a pair ( N e ,  D,) where Ne = Nu( t ,  e )  and D, = D( t ,  e )  are the numerator 
and denominator of the effective thermal transmissivity teR = t',"( t, e ) .  In general, for 
a 'non-effective' edge e this pair is just ( r e ,  l ) ,  but for an effective edge both N ,  and 
D, are multilinear functions of the t ,  whose coefficients are polynomials in A. In 
particular applications it may be unnecessary to have a separate t variable for each 
edge, and a special value of A may be substituted. In this case Ne and D, become 
polynomials in one or more variables and require less storage space. 

The inputs of T (  G, P, N, D )  are the above 'decorated' graph G and the partition 
P, and the outputs are the numerator N and denominator D of tbq(t ,  G). When P is 
the null partition $0  (i.e. when there are no roots at all) this procedure calculates only 
D and makes N = D for reasons which we shall see later. The main steps of the 
recursive procedure T (  G, P, N, D )  are the following. 

Step I. Splitting into pieces. 
The object of this part is to partition G into subgraphs G I , .  . . , G, in such a way that 
the factorisation rules of § 4.4 may be used. In the case when P has more than one 
block the procedure is complicated by the possible occurrence of a situation represented 
by figure 4( b )  with i unrooted. The procedure is as follows. Find the 1 articulation 
points a , ,  a,, . . . , a/ of G, and identify the pieces into which G is separated by these 
points (using, for example, the algorithm described by Tucker (1980)). Iteratively split 
off all pieces having no roots and exactly one articulation point of G. Label these 
pieces GI,. . . , G, and set the corresponding partitions P I ,  . . . , P, equal to P o .  Con- 
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sidering the remainder of G, whenever an articulation point a, belongs to any path 
connecting roots of a type i ( i  = 1,2 , .  . . , b j we transform a, into a root of type i. If 
any ai becomes a root of two or more types then ( 4 . 1 7 ~ )  holds and we need to calculate 
only D(  t, G ) .  In this case we set KEY = 0, ignore all roots of G, label the remaining 
pieces Gq+l , .  , . , G, and make Pk = Po for k = 9 + 1, . . . , r. Otherwise set KEY = 1 and 
split the remainder of G into composite pieces G,,, , . . . , G, by separation at the rooted 
articulation points only. For k = 9 + 1, . . . , r, the partition P k  is defined by the blocks 
of roots of the same type which belong to G,. If $ k  has one unique block with a 
single root then make Ph =Po. For example, the respective partitions P, and P2 of 
the roots of G, and G, in the cases shown in figure 4 are as follows. 

Figure 4(a) .  
Figure 4( b ) .  

Figure 4( c). 
Figure 4( d ). 

$ 1  = {{1,21; {3,4}; (511; $ 2  = $ 0 .  

( i )  i is a root represented by a circle: P, = {{1,2}; (5, 6,7,  i}}; P2 = 
{{i1; {3,41; (8,911. 
(ii) i is not a root. In this case the graph must be treated as a composite 
piece with corresponding partition P given by P = {{1,2}; 
(5 ,6971;  (3941; {8,9}1. 
PI  = { { I ,  2); { 5 , 6 , 7 ,  i}1; P2={{3,41; {i, 8,911. 
P1=Po;Pz=Po. 

Step II. Calculation of Nk and Dk.  
For each composite piece Gk do the following. 
While 1 V( Gk)l > 2 and (a),  (b) or (c), described below, is possible, do the first one 
which is possible. 
(a) Edges in series. 
Replace two effective edges e:: and e$' in series with respective effective transmissivities 
N , / D ,  and N 2 / D 2  by a single edge with effective transmissivity given by equations 
(4.11). 
(b) Edges in parallel. 
Replace two effective edges e$) and e:: in parallel with respective effective trans- 
missivities N l / D 1  and N J D ,  by a single edge with effective transmissivity given by 
equations (4.12). 
(c) Non-reducible subgraph replacement. 
( c l )  Look for an articulation pair {i, j } ,  breaking Gk into the subgraphs Lk and Hk 
such that H A  n LA = {i, j } ,  Hk U Lk = G k ,  all the roots belong to Hh (except possibly i 
and/or j )  and the numbers of edges in Hk and LI, are as nearly equal as possible. 
(c2) Call T(L,, {{i,j1}, NLk, DJL). 
(c3) Construct ek obtained from GA by replacing L k  by a single edge e,, with effecTive 
transmissivity NLk/  DLk.  Replace G, by G,. 
(d)  Break-collapse. 
If I V(Gk)l > 2 then do the following, else do (e). 
( d l )  Look for one edge e = [ i , j ]  of E(G,)  where the sum of the number of edges 
incident with i and those incident with j is the maximum possible. The thermal 
transmissivity of e is N,/D,. 
(d2) Construct G;" from Gk by deleting the edge e and call T(G;",  PA, N;" ,  DE). 
(d3) Construct Gky and P i  from Gi and Pk respectively by identifying the vertices i 
and j .  If P: has a single root or if i and j are roots of different types then set P; = Po. 
Call T(G:, Pz, NX, Dky), 
(d4) Check if i and j are roots of different types. If so set NZ = 0 (cf (4.4)). 
(d5) Set (see (4.13)) Dk=(D,-N, )D;+N,D:  and N k = ( D , - N , ) N ; + N , N ;  
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if Pk f Po, else Nk = Dk. 
(e) Terminal conditions. 
Check if Gk is in a terminal condition, i.e. we know Nk and Dk explicitly. This happens 
when Gk consists of n (n  a 1) edges e, ( a  = 1,2 , .  . . , n )  in parallel with effective 
thermal transmissivities N, /D, .  Set Dk equal to the right-hand side of ( 4 . 1 5 ~ )  and 
Nk equal to the right-hand side of (4.156) or (4.15d) according to the respective cases 
where the two vertices of Gk are roots of the same type or not. 

Step III. Calculation of N and D. 
After computing Nk and Dk for all values of k ( k  = 1,2,  . . . , r ) ,  set 

and 

else 

or 
N=O i f K E Y = O  

N = D  i f K E Y = l .  

( 5 . 1 ~ )  

(5.lb) 

( 5 . 1 ~ )  

(5 . ld)  

Notice that (5.lb) is true only because the procedure sets Nk = Dk when P k  =Po; 
otherwise we would have (cf ( 4 . 1 7 ~ ) )  to replace Nk by Dk whenever $ k  was equal to 
the null partition. 

It is worth emphasising that a similar SBCM holds for the calculation of F,(A, G )  
and F(A ,  G ) .  In this case F,(A, G )  and F(A,  G )  play the same role as N,(t, G )  and 
D(t ,  G ) ,  and to each edge e we associate the pair ( F v ( A ,  e), F ( A ,  e ) )  instead of 
( N o (  t, e),  D( t ,  e)).  For a non-effective edge this pair is equal to (1,O). All the formulae 
remain valid provided we replace Ne and 0, by Fi,"' and F',), respectively. 

5.2. An illustration of the SBCM for tbq(t, G )  

Figure 5 illustrates the SBCM described above by the calculation of f ; S i , 3 ( f ,  G )  for a 
three-rooted graph G whose edges have the same thermal transmissivity t ,  = t ,  Ve E E. 
The equivalent transmissivities which appear there are defined as follows: 

2tZ+(A -2)f' 
t ,  = 

i + ( h - i ) t 4  

2 t + ( A  -2 ) f2  
1 + ( A  - 1)t' 

t ,  = 

( 5 . 2 ~ )  

(5.2b) 

4t+6(A -2)tZ+4(A2-3A+3)t3+(A -2)(A2-2A +2) t4  
t ,  = 1+6(A - I ) t2+4(A -1)(A -2)t3+(A -1)(A2-3A+3)t4 

( 5 . 2 ~ )  

2t2+2t3+5(A -2)t4+(A -2)(A - 3 ) f '  
1 + 2 ( A - l ) t 3 + ( A - l ) t 4 + ( A - 1 ) ( A - 2 ) f 5  

t l  = t ; y  t,  L) = (5.2d) 

3t2+2t3+7(A - 2 ) t 4 + A ( A  -l)t5+(5A2-19A +19)t6+(A -2)(A2-4A + 5 ) t 7  

1+2(A - l ) f3+3(A - l ) t4+A(A-l ) t5+5(A -1)(A - 2 ) t 6 + ( A  -l)(A -2)(A -3)t" 
t ,  = 

(5.2e) 
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I 
Figure 5. A schematic representation of the calculation of t;j,,( I, G )  for the drawn graph 
G 'decorated' with equal thermal transmissivities I through the SBCU using the algorithm 
described in 8 5.1. The steps used from one graph to the other are indicated in parentheses. 
The effective thermal transmissivities associated with their respective effective edges are 
also indicated. A zigzag bar indicates the edge I to be deleted and contracted. The respective 
polynomials at the top and bottom of a rectangle represent the numerator N and 
denominator D of the equivalent transmissivity of the preceding graph. Transmissivities 
I,, t P ,  I ~ ,  I ,  and I,! are defined in equations (5 .2) .  The double line (a=) points to the 
subgraph replacement. The calculation of I ? ~ , , ( I ,  c), with drawn in ( a ) ,  is represented 
in ( b )  (overleaf) where r l  = I ,  and r2 = I<, .  
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t 

G9= 1 

Figure 5. (continued) 
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The effective thermal transmissivity t ,  was calculated first in order to replace L by a 
single edge, thus generating the graph which appears on the left-hand side of figure 
5 ( a ) .  

= t q )  with the effective 
BCE (4.13) we get the following equivalent transmissivities for the graphs generated 
by the application of the SBCM to t;&( t ,  G): 

Combining the results of figure 5 ( b )  (where T ,  = t ,  and 

f-t2-3t3+(2A-l)f4-(6A -15)r5 
+(4A -11)t6+(4A - 9 ) t 7 - ( 6 A - 1 3 ) t 8 + 2 ( A - 2 ) t y  

(5.3) 1+2(A - l ) t3+6(A - l ) t 4 + ( A  -1 ) (A+2) t5  t ; x t ,  G,) = 

+12(A - l ) (A -2)t6+2(A -1)(A’-3A+3)t7 
+ ( A  -1)(5A2-19A+19)ts+(A - 1 ) ( A  -2)(A2-4A+5)t’  

2 t + ( A  -6)f2-2(A -1) t3+(3A+2)t4 
+2(A2 - 10A + 15)f5+ (-8A2+ 55A - 8 2 ) t 6  
+2(6A2-33A +43)t7+(A -2)(-8A +21)t8+2(A -2) ‘ t ’  

(5.4) 1 +2(A - l ) t ’+ 2(A - l ) t 3  + ( A 2 +  7A - 8 ) t 4 +  ( A  - 1)( 13A - 14)t5‘ t;:,dl, G,) = 

+ 2(A - 1)(A2 + 1 1A - 25) t6  + 2( A - 1)( 15A’ - 59A + 59) t 7  
+ ( A  -1)(9A3-57A’+122A -87)t’ 
+ ( A  -1)(A-2)(A3-6A’+14A-ll)t9 

Combining (5.3) and (5.4) with (4.13) we finally get that: 

N12,3( t, G )  = t + ( A  - 8 ) t 3  +4t4 -  (5A - 18) t5  +2(A’ - 5A + 2 ) t 6 -  (8A2 - 55A + 80)t’ 

+4(3A2 - 19A + 27)t3 - (8A‘ -45A + 59)tY+2(A - 2 ) ( A  - 3)t“’ (5 .5a )  

and 

D(t ,  G ) = 1 + 4 ( A - l ) t 3 + 6 ( A - l ) t 4 + 2 ( A 2 + A  - 2 ) t 5 + 8 ( A  -1)(3A-5)r6 

+4(A-l)(A2+A-5)t7+(A-1)(33A’-131A+131)t’  

+ ( A  - 1)( 10A’ - 68A + 154A - 116) f’+ ( A  - 1)(A - 2)’(A’ - 5 A  + 8)  I ” .  

( 5 . 5 6 )  

Notice that the coefficient of t I E ’  in D(t ,  G) (see ( 2 . 7 ) )  is given by the sum of the 
F ( A ,  G‘) corresponding to all the subgraphs G’ with lE’I edges, each of which belongs 
to a cycle (see § 6 of PFZ). For example, the coefficient of t’ in (5.56) is the sum of 
the flow polynomials corresponding to the four subgraphs shown in figure 6. In the 

j A - 1 )  I A-1 I ( A - 1 )  ( A-I 1 

Figure6. The partial graphs G’of  G (drawn at  the top  of figure 5 ( a ) )  with their respective 
flow polynomials F ( A ,  G’) which contribute to  the coefficient of f 3  in D(f ,  G) (equation 
( 5 . 5 6 ) ) .  The broken lines indicate missing edges. 
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case of N12,3(f, G), the coefficient of tIE’ (see (2.9)) is the sum of the F12,3(A, G’) 
corresponding to all the subgraphs G‘ with IE’l edges which have no ‘dangling end’ 
and in which 1 and 2 are connected but not via 3 (otherwise Y ~ ~ , ~ ( G ” )  would vanish 
for all G”G G’). For example, there are only seven subgraphs G’ (see figure 7 )  which 
contribute to the coefficient of t 3  in ( 5 . 5 ~ ) .  

5.3. The BCM for rbq(t, G) 

The B C M  for tbq( t, G )  consists in combining: (i)  the factorisation rules for articulated 
graphs; (ii) the equations for effective edges in series and in parallel; (iii) the effective 
BCE (4.13). Unlike the SBCM, it does not search for the mentioned pair of vertices {U} 
which appears in the ‘non-reducible subgraph replacement’. Figure 8 shows schemati- 
cally the application of the BCM to the calculation of t&( t, G) corresponding to the 
same graph used in the illustration of the SBCM. In this figure, t, and  t, are defined 
by ( 5 . 2 ~ )  and  (5.26) while t,. and t ,  are respectively 

3t’+ 3(A - 2 ) t 4 +  ( A ’ - 3 A  + 3 ) t 6  
1+3(A - l ) t 4 + ( A - l ) ( A  - 2 ) t 6  

t,. = ( 5 . 6 ~ )  

and  

t ,  = (5.6b) 

Combining the results of figure 8 with the effective BCE we obtain the expected 
expressions (5.5) for NI?.)( t ,  G) and D( t ,  G).  

5t2+4(A -2) t3  + ( A 2 + 2 A  - 6)t4+4(A -2)’t‘+ ( A 3  - 5A2+ 10A - 7)t‘ 
1 + 2 ( A  - l ) t 2 + ( A  -1)(A+3)t4+4(A -1)(A -2)t’+(A -1)(A -2 ) ’ t” ‘  

1-1) 1-11 1-11 

Figure 7. The partial graphs G’ of G (drawn in figure 5 (  a ) )  with their respective F,z ,3(A,  G’) 
which contribute to the coefficient of r 3  in N , z , 3 ( r ,  G )  (equation ( 5 . 5 ~ 2 ) ) .  The broken lines 
indicate missing edges. 
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Figure 8. A schematic representation of the calculation of t&( t ,  G )  for the same graph 
G given in figure 5 through the BCM described in 8 5 . 3 .  The calculation of I ; ; , ~ (  I, Gt) and 
f;?.,( t, G:) require the calculation of t ; j , 3 ( t ,  G,) (see figure 5 ( b ) )  where ( T i  = f,, T ? =  t l $ )  
and ( T i  = t i ,  T~ = 1 , )  respectively. The effective transmissivities t,, f,,, t , ,  and 1, can be found 
in equations ( 5 . 2 ~ ) ,  ( 5 . 2 b ) ,  ( 5 . 6 ~ )  and ( 5 . 6 6 )  respectively. 

Comparing figures 5 and 8 we see that for this two-reducible graph the BCM 

necessitates the calculation of the equivalent transmissivities of more graphs (23)  than 
does the SBCM (17 graphs). Figure 8 shows the application of the BCE seven times 
while in figure 5 one ‘non-reducible subgraph replacement’ is made and the BCE is 
used four times. 

When the partition P of the m roots has only one block, it is possible to construct 
a BCM for G) without using the split procedure described in step 1 of § 5.1 
(Tsallis 1987). 

6. The SBCM for bond percolation 

In this section we consider the A + 1 limit of our formulae in order to obtain results 
for the connectedness functions of bond percolation theory. As we have seen in 9 7 
of PFZ, the flow polynomial vanishes for A = 1 (except for the null graph) and Fp( 1, G) 
is the partitioned d weight d , ( G )  (see (7.6) of PFZ) which is a generalisation of the 
ordinary d weight which occurs in the expansion of the pair connectedness (see, e.g., 
Essam 1971b). In this limit, the t and p variables become equal, and tbq( t ,  G) reduces 
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to the partitioned m-rooted connectedness C,( p ,  G )  which generalises the pair con- 
nectedness Cl2( p ,  G)  which appears in bond percolation. 

6.1. Main formulae f o r  dp(G) 

From (3 .15 )  we obtain the following SBCE for d,(G): 

dp(G) = d , ( L ) d p ( H  U e ) .  (6.1) 

The factorisation equations corresponding to the cases illustrated in figure 4 are (see 
equations (3.18)): 

figure 4( a )  dp(G1U G2)=0 ( 6 . 2 ~ )  

figure 4( b, c)  dp(GiU G2)=4(Gi)dp,(G2) (6.2b) 

figure 4( d )  d p (  GI U G,) = 0. ( 6 . 2 ~ )  

From (3.16) we obtain the following equation for parallel combination: 

d,(Gi U G2)=-d,(G,)d,(G,). (6.3) 

Equations (6.1), ( 6 . 2 ~ )  and (6.3) agree, when m = 2 and P has a single block, with 
known results (Essam 1971b). 

6.2. The SBCM and BCM for  C,(p, G )  

Considering now the probability C,(p,  G )  that the m roots of G are connected in 
blocks according to the partition P, we can see from equations (4.2) and (7.2) and 
equation (7 .3 )  of P F ~  that it satisfies the following SBCE: 

C d p ,  G ) = [ l - C , ( p ,  L)IC,(P, H ) + C , ( p ,  L)CP(P, H=,) (6.4) 

which, for P={{ l ,2}} ,  recovers equation (3.14) of Essam (1971b), referred to as the 
edge substitution equation for the pair connectedness. 

Equation (6.4) can be interpreted as follows. Cp(p, G )  can be written as the sum 
of the probabilities of two disjoint events: (a) the probability Pa that the roots of G 
are P partitioned and that i and j are not connected in L ;  (b) the probability P b  that 
the roots of G are P partitioned and that i and j are connected in L. 

According to probability theory, the probability P ( a ,  fl a 2 )  that two events a I  and 
a,  occur simultaneously is given by 

P(a2fl Q I )  = P(azlal)P(.l) (6.5) 

where P ( a l )  is the probability that event a l  occurs and P(a,la,) is the conditional 
probability that event a2 occurs given that a 1  occurs. In case (a),  P, (a l )  represents 
the probability that i and j are not connected in L (hence P,(al)  = 1 - C,( p ,  L ) )  and 
P,(azlal) is the probability that the roots of G are P partitioned given that i and j are 
not connected on L (Pa(a21a,) = C,(p,  H )  since in this case the roots of G must be 
P partitioned on H itself). In case (b), P b ( a 1 )  is the probability that i and j are 
connected on L (hence P b ( a l )  = C,,(p,  L ) )  and P,(a,la,) is the probability that the 
roots of G are P partitioned given that i and j are connected on L. This conditional 
probability is equal to Cp(p, H,=,) since, as we have seen in § 3.2, when y,,(L') = 1 we 
need to consider the connections among the roots of H:=,. 
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The factorisation rules for articulated graphs corresponding to figure 4 are given 
by (cf equation (4.17) and  equations (7.2) and  (7.3) of P F ~ ) :  

figure 4( a )  (6.6a) 

figure 4( b, c )  (6.66) 

figure 4( d )  ( 6 . 6 ~ )  

The parallel equation for C,( p ,  G) can be written as (see equation ( 4 . 1 2 ~ )  and equations 
(7.2) and (7.3) of P F ~ ) :  

Cp( P, Gi U Gz) = Cp( P, GI 1 
C d P ,  GI U G J  = C d P ,  Gl)CP (P, G J  

Cp( p ,  G, U G2) = 0. 

1 - C,  ( P, GI U Gz) = ( 1 - C, ( P, Gi ) 1 - C,, ( p ,  G,) 1. (6.7) 
Equation (6.66) particularised for P = { { i ,  j } }  and equation (6.7) are respectively the 
same as equations (3.3) and  (3.1) of Essam (1971b). 

The above formulae may be used, instead of the corresponding transmissivity 
equations, in the algorithms of § 5 to define the SBCM and BCM for Cp(p, G). The 
recursive procedure T (  G, P, N, D )  is replaced by CO( G, P, C )  which has only one 
output C, the partitioned connectedness, instead of the pair N, D. Also only one 
multilinear function, the equivalent pair connectedness, is associated with each edge 
of G. 

7. Summary 

We have proved, through graph theory, the formulae which appear in the BCM for the 
partitioned equivalent transmissivities which, for a one-block partition, has been so 
extensively used in real space renormalisation group calculations for the Potts model. 
We have also developed a more refined method (the SBCM) based on the same formulae, 
but which is considerably more eficient than the BCM since it allows for the replacement 
of any subgraph L, which is attached at only two vertices and which has no internal 
roots, by a single effective edge at any stage of the calculation. In the BCM the only 
subgraphs L considered were edges in series and/or  parallel which were replaced by 
effective edges with effective thermal transmissivities given by equations (4.1 1) and 
(4.12) respectively. These equations, together with the factorisation rules for articulated 
graphs (equations (4.16) and  (4.17)) and the effective break-collapse equation (4.13), 
constitute the main expressions used in the two above methods. We derive them from 
similar relations which we have proved to be true for the flow polynomials and the 
partitioned flow polynomials. Both the SBCM and the BCM provide a way of computing 
the exact expressions for the partitioned equivalent transmissivities, and  hence for the 
multispin correlation function (see equation (2.14)) and  for the partition function (see 
equation (2.13)), for finite graphs. They avoid the time-consuming summation over 
spin states and may be used either in the extension (or derivation) of series expansions 
or of real space renormalisation group calculations on crystal and hierarchical lattices. 
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Appendix. The SBCM for other quantities 

Let us first quote very briefly previous results (see PF2) expressed in the p variable of 
Kasteleyn and  Fortuin (1969). 

The partition function Z ( p ,  G )  is: 

with 

D( p ,  G )  E ( A " ) G , p  

pe = 1 - exp( -A&).  

(A lb )  

(Ale) 

where w(G')  is the number of components of G '  and p e  is given by 

The multilinear form of D(p ,  G )  is 

where P(A, G) is the chromatic polynomial of G with A colours given by 

P(A,  G )  = C ( -  1)""A""" (A261 
G'E G 

Tlz...,,(p, G )  is given by (2.14) where now 

with 

NP(p, G, E (AWYP)G,p. 

The multinear form of N,(p,  G )  is 

N d p ,  G ) =  c (-l)""PdA, G ' )  fl P e  
G'c G e c E '  

where the partitioned m-rooted chromatic polynomial is 

Pp(A, G ) =  (-l)iE'iA"'G' 'y,(G'). 
G ' c  G 

The partitioned m-rooted rank function Wp(x, y, G),  which extends the Whitney rank 
function W(x, y,  G )  (see Essam 1971a) becomes, for y = A x ,  

W,(x, Ax, G) = W,( G) = C X ' ~ ' ~ A ~ ( ~ ' )  Y d  GI). ('45) 
G'E G 

P,(A, G),  N,(p,  G) and W,(x,y, G) are related to &(A,  G') through equations (4.5), 
(4.6) and  (4.13) of P F ~  respectively. Using these relations and equations (3.8), (3.16), 
(3.17) and  (3.18) we can define the SBCM for these functions using the algorithm of § 5 .  
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Using the above formulae we can construct further SBCM and BCM along similar 
lines to the algorithm of 9 5 .  
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